Non-linear Wave Equations – Week 4

Gustav Holzegel

May 7, 2021

1. (Uniqueness of distributional solutions to non-constant coefficient linear wave equations in the space $C^0([0,T],H^1(\mathbb{R}^n))\cap C^1([0,T],L^2(\mathbb{R}^n))$.)

Recall that to prove uniqueness of our class of linear wave equations we need to show that the only distributional solution $\Phi \in C^0([0,T],H^1(\mathbb{R}^n)) \cap C^1([0,T],L^2(\mathbb{R}^n))$ with zero initial data is $\Phi \equiv 0$.

Prove that if $\Phi \in C^0([0,T],H^1(\mathbb{R}^n)) \cap C^1([0,T],L^2(\mathbb{R}^n))$ satisfies

$$\int_{0}^{T} \int_{\mathbb{R}^{n}} \Phi \partial_{\alpha} \left(a^{\alpha\beta} \partial_{\beta} \psi \right) dx dt = 0 \quad \text{for all } \psi \in C_{0}^{\infty} \left([0, T), \mathbb{R}^{n} \right)$$
 (1)

then $\Phi \equiv 0$ in $[0,T] \times \mathbb{R}^n$. (You can follow the outline below.)

(a) Show that the above assumption and the regularity of Φ implies that

$$\int_{0}^{T} \int_{\mathbb{R}^{n}} \partial_{\alpha} \Phi \left(a^{\alpha \beta} \partial_{\beta} \psi \right) dx dt = 0$$
 (2)

holds for all $\psi \in H^1([0,T) \times \mathbb{R}^n)$.

(b) Fix now $s \in (0,T)$ and define the function $v:[0,T)\times \mathbb{R}^n \to \mathbb{R}$ by

$$v(t,x) = \int_{t}^{s} \Phi(\tau,x)d\tau$$
 for $0 \le t \le s$ and $v \equiv 0$ on $(s,T) \times \mathbb{R}^{n}$.

Observe that $v \in H^1([0,T) \times \mathbb{R}^n)$ and insert it in (2) as a test function obtaining an estimate

$$\|\Phi\|_{L^{2}(\mathbb{R}^{n})}^{2}(s) + \|a^{ij}\partial_{i}v(0,\cdot)\partial_{j}v(0,\cdot)\|_{L^{1}(\mathbb{R}^{n})} \leq \dots$$

Set now $w(t) = \int_0^t \Phi(\tau) d\tau$ to deduce an estimate to which Gronwall's inequality can be applied.

- 2. Verify the estimates for the expressions denoted by β and γ in the lecture notes!
- 3. (Ill-posedness of the Cauchy problem for elliptic equations.)

Consider the Cauchy problem for Laplace's equation, i.e. $\Delta \phi = \frac{\partial^2}{\partial t^2} \phi + \frac{\partial^2}{\partial x_1^2} \phi + \dots \frac{\partial^2}{\partial x_n^2} \phi = 0$ on \mathbb{R}^{1+n} with prescribed Cauchy data $\phi(t=0,x) = f(x)$ and $\partial_t \phi(t=0,x) = g(x)$. Show that:

- (a) If f and g are analytic near the origin in \mathbb{R}^n , then an analytic solution exists in small neighbourhood of the origin in \mathbb{R}^{1+n} .
- (b) Any classical solution of $\Delta u = 0$ in an open set \mathcal{U} is actually analytic in \mathcal{U} . (Feel free to consult a standard PDE reference (e.g. Evans) if you have not seen this before.) Conclude that the Cauchy problem cannot be solved outside the analytic class.
- (c) Set n=1 and check that with $k \in \mathbb{N}$

$$\phi_k(t,x) = \frac{1}{k^2}\sin(kx)\sinh(kt)$$

is a family of solutions to the Cauchy problem with data $\phi(t=0,x)=0$, $\partial_t \phi(t=0,x)=\frac{1}{k}\sin(kx)$. Prove that for any T>0, the following is true: Given any C>0 (large) and $\delta>0$ (small), one can find initial data with $\|f\|_{C^1(\mathbb{R})}+\|g\|_{C^0(\mathbb{R})}<\delta$ such that $\sup_{[0,T]\times\mathbb{R}}|\phi|\geq C$. Compare and contrast with the wave equation!

Analysis Review Problems

1. Prove the following interpolation inequality

$$||f||_{H^{s}(\mathbb{R}^{n})} \le ||f||_{H^{s_{1}}(\mathbb{R}^{n})}^{\theta_{1}} ||f||_{H^{s_{2}}(\mathbb{R}^{n})}^{\theta_{2}}$$

$$\tag{3}$$

for some $C = C(s_1, s_2, s, n)$ where $0 \le s_1 \le s \le s_2$, $\theta_1 + \theta_2 = 1$ and $\theta_1 s_1 + \theta_2 s_2 = s$. HINT: Use Hölder's inequality.

- 2. Prove the following basic version of the Banach Alaoglu theorem: Let (u_k) be a bounded sequence in a Hilbert space H, i.e. $||u_k||_H \leq C$. Then there exists a subsequence which converges weakly in H. HINT: Use the following outline
 - (a) Pick an ONB (e_k) and use a diagonal argument to show that for a subsequence of the (u_k) , denoted $(u_n^{(n)})$ (arising from a Cantor diagonal argument) we have that

$$\langle u_n^{(n)}, e_k \rangle \to v_k \in \mathbb{R}$$
 holds for all e_k .

- (b) Show that $\sum_{k=1}^{\infty} |v_k|^2 < \infty$ and hence $v = \sum_k v_k e_k \in H$.
- (c) Show that $u_n^{(n)} \rightharpoonup v$.